
J .  Fluid Mech. (1975), vol. 67, part 2, pp. 209-225 

Printed in Great Britain 

209 

A thermal boundary layer in a reversing flow 

By T. J. PEDLEY 
Department of Applied Mathematics and Theoretical Physics, 

University of Cambridge 

(Received 8 May 1974) 

Conventional boundary-layer theory cannot be applied when the fluid velocity 
outside the layer changes direction, and the leading edge of a finite body changes 
ends. In  this paper an approximate method for examining the details of the 
boundary layer during a single flow reversal (occurring at  t = 0) is described. It 
is based on the expectation that (a )  long before reversal ( t  < -t l) ,  there will be a 
quasi-steady boundary layer appropriate to flow in one direction; (b )  long after 
reversal (t  > tz )  there will be a quasi-steady boundary layer appropriate to flow 
in the opposite direction, and ( c )  in between there will be a period of pure dif- 
fusion. The method is applied to a simple heat-transfer problem, in which a fluid 
of thermal diffusivity D flows with uniform velocity U = At over the plane y = 0; 
the strip 0 < x < L of the plane is maintained at temperature TI, while the rest 
of the plane and the fluid far away have temperature To. The approximate 
solution is compared with an exact solution of the boundary-layer equation, and 
is shown to give an accurate prediction of the heat transfer as a function of time. 
The boundary-layer approximation itself breaks down in regions of length 
O(D8A-5) near the ends of the heated strip, as usual; it also breaks down in the 
neighbourhood of the point x = +At2, t > 0, a t  which the influence of the new 
leading edge is first felt after flow reversal. In  a solution of the full equation, 
this region is examined in detail, and boundary-layer theory is shown to be 
sufficiently accurate for the calculation of heat transfer. 

1. Introduction 
The use of boundary-layer theory simplifies the analysis of steady flow past 

a solid body largely because the governing equations become parabolic in x, the 
co-ordinate measured along the body surface. In  other words the velocity profile 
at a given value of x depends only on the upstream flow, at  smaller values of x, 
and is independent of conditions downstream. This simplification can also be 
made in an unsteady flow, as long as the velocity of the fluid far from the body is 
always in the same direction. If i t  reverses its direction, however, the ‘leading 
edge’ of the body changes ends, and ‘upstream’ does not always refer to smaller 
valuesof x. Thevelocity profile a t  a given value of x will depend, at  different times, 
on the flow a t  both larger and smaller values, and even if the boundary layer 
on the body surface remains thin all the time, the simplifications which that 
usually permits are lost. 

If the direction of flow reverses repeatedly, with a high frequency and a small 
F L M  67 I4 
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amplitude, the flow is dominated by an oscillatory Stokes layer on the body sur- 
face, and all the details can be analysed accordingly (see Riley 1967). Such an 
analysis, however, requires that the two parameters vIwL2, and UIoL are both 
small, where U is a typical oscillatory velocity, L is the length of the body, w is the 
angular frequency of the oscillation and v is the kinematic viscosity of the fluid. 
This paper represents a first step towards the analysis of boundary layers in 
flows which reverse their direction with a low frequency and possibly a large 
amplitude, so that neither of the above parameters is necessarily small. The 
object of the paper is to propose an approximate method for performing the 
analysis, and to check the accuracy of the method by an exact solution of a 
particularly simple problem. 

Perhaps the most important example of a flow which repeatedly reverses its 
direction is that of blood in large arteries. In  a normal human aorta, for instance, 
the blood velocity on the centre-line oscillates periodically (but not sinusoidally) 
between a maximum value of about 1.4 ms-l and a minimum of about - 0.4 ms-l, 
with a mean value of about 0-3 ms-1 and a frequency of 1-2 beats per second. In  
recent years, there have been a number of measurements of blood velocities in 
large arteries by means of hot-film anemometry (see Nerem, Seed & Wood 1972). 
The anemometer is calibrated for in vivo studies by placing the probe in a sequence 
of known steady flows, and assuming that its response in an unsteady flow is 
quasi-steady. Laboratory studies in known oscillatory flows have shown that this 
is a good assumption for the probes used, except for a short period around the time 
when the flow reverses its direction and the blood velocity is low (Seed & Wood 
1970). Indeed, these experiments indicate that the quasi-steady assumption is 
rather better than has been predicted theoretically (Pedley 1972). However, that 
theory is not applicable if either the blood velocity far from the probe, or the 
shear rate in the blood at the location of the hot film, reverses its direction or 
becomes very small. Since such reversals repeatedly take place both in arteries 
and in the laboratory experiments, the practical value of the theory is limited. 
It is hoped that the present work will lead to a more universally applicable 
theory. 

Consider a fluid flowing past a flat plate of length L, with a velocity U(t )  far 
from the plate which varies with characteristic frequency w .  Suppose that the 
Reynolds number L U ( t ) / v  is large, and the frequency parameter wL/U(t) is 
small, at  all times except for short periods while flow reversal is taking place 
and U ( t )  passes through zero. It is therefore plausible that, except during those 
periods, the convective inertia terms in the equation of motion are large com- 
pared with the unsteady inertia terms, and a quasi-steady boundary layer is 
formed. For simplicity, we shall consider a single flow reversal, and suppose it 
to occur at  time t = 0, with U(t) being negative for t < 0 and positive for t > 0. 
The first stage of the approximate theory is then to assert that there is a quasi- 
steady boundary layer for sufficiently large negative and positive values of 
t ( t  < - t, and t > + t,, say). The leading edge, from which the boundary layer 
grows, is not at the same end of the plate for t > t,, after reversal, as it is for 
t < -tl, before reversal. The next stage is to estimate the nature of the flow 
for intermediate times. This estimate is based on the recognition that for times 
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close to t = 0 the convective inertia terms will be small, since U(t )  is small, and 
will probably be dominated by the unsteady inertia terms. Thus, instead of the 
quasi-steady balance between convective inertia and viscous terms, there is a 
quasi-diffusive balance between unsteady inertia and viscous terms. Further- 
more the boundary-layer approximation should still be applicable during this 
interval, as long as there is not enough time for the boundary layer to grow so 
much that its thickness becomes comparable with L. The approximate theory 
therefore asserts that, when -t ,  < t <: t,, the boundary-layer approximation 
can still be applied, and the flow is given by the quasi-diffusive balance between 
unsteady inertia and lateral diffusion. The only important problem now remain- 
ing is to identify the change-over times - t ,  and + t,. I n  order to do so, it is neces- 
sary to consider a specific example in detail. 

The example we choose is one for which an exact solution can easily be found, 
and used to check the approximate theory. It is that of the thermal boundary 
layer in a known flow over a heated region of a plane boundary. Since the flow is 
known, the governing equation for the temperature is linear, and the problem is 
much simpler than that of the corresponding viscous boundary layer. This 
problem was suggested by the application to hot-film anemometers, but we 
make it simpler still by supposing the velocity over the heated region to be uni- 
form (u = U ( t ) ,  v = O ) ,  and not sheared as it would be over a real rigid boundary. 
The only direct application of the present solution might be to heat transfer in 
liquid metals, where viscous boundary layers are much thinner than thermal 
boundary layers because the Prandtl number is small. The problem is not directly 
applicable to blood flow, but should be regarded as a simple prototype; the 
approximate method developed here will be applied in a subsequent paper to 
realistic thermal and viscous boundary layers. 

The problem is formulated mathematically in the next section. The approxi- 
mate solution, including estimates of the change-over times -t,  and +t,, is 
presented in $3.  An exact solution of the boundary-layer equation is given in 
$4, where it is shown that the approximate theory does give a satisfactory 
estimate of heat transfer from the heated region. Finally, in 95, the exact solution 
of the full equation is examined, because the boundary-layer approximation 
appears to break down near the transition from the diffusive solution to the 
quasi-steady solution a t  time t = t,. The detailed structure of the solution in the 
neighbourhood of this transition is determined, and it turns out that the error in 
the heat-transfer function as calculated by means of boundary-layer theory is 
indeed small. 

2. Formulation of the simple problem 
Fluid of constant thermal diffusivity D occupies the semi-infinite domain 

y > 0, and flows with uniform but unsteady velocity U(t )  in the x direction. The 
region 0 < z < L of the plane y = 0 is raised to the constant temperature T, while 
the fluid far from this plane has temperature To. We wish to calculate the two- 
dimensional temperature field over the heated region, and in particular (with 
hot-film anemometers in mind) we seek the rate of heat transfer from the heated 
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region, as a function of time. It is possible to solve this problem, under the 
boundary-layer approximation, for an arbitrary function of time U(t) .  However, 
it is more instructive to examine a single flow reversal, occurring at  time t = 0; 
as long as U(t )  is sufficiently slowly varying it can therefore be represented near 
t = 0 by a constant acceleration A .  The condition for this to be a good 
approximation is that the time scale for changes in the velocity, say l/w, should 
be large compared with the time, spanning flow reversal, during which the 
temperature field is not approximately quasi-steady; this turns out to be pro- 
port’ional to L*/(AD)*. We therefore require 

w ~ 4 / ( ~ ~ ) +  I,  

u = U ( t )  3 At, 

and from now on shall restrict our attention to the velocity field 

(2.1) 

where A is a positive constant. Thus the flow is in the negative x direction for 
t < 0, and in the positive x direction for t > 0. 

We make x and y dimensionless with respect to the length scale (D2/A)*, and 
we make t dimensionless with respect to the time scale (D/A2)+, denoting dimen- 
sionless variables by the same symbols as their dimensional counterparts. The 
non-dimensional velocity is equal to t. The governing equation for the dimension- 
less temperature 8 = (2’ - T,)/(T, - To) is 

The boundary conditions on 19 are 

( 3 . 3 a )  
8 = 1  on y = O ,  0 < x < l ,  I x I  + “I 8 + 0  as y+oo or 

and 

where 1 = L ( A / P ) *  is the dimensionless length of the heated strip. The obvious 
condition to impose on the rest of the plane y = 0 is that it is insulated, i.e. 
8, = 0. However, this condition leads to a mixed boundary-value problem, whose 
solution requires complicated analytical methods like the Wiener-Hopf tech- 
nique. We therefore replace it by the much simpler isothermal condition 8 = 0. 
In steady problems it is known that this makes no difference to the boundary- 
layer solution for 8 in the range 0 < x < 1. The only difference in the exact soh- 
tion occurs in small regions, of length O(l ) ,  in the neighbourhood of x = 0 and 
x = 1, where the boundary-layer approximation breaks down anyway. There is 
no reason to suppose that the changed boundary condition has any greater 
effect in the unsteady case. The additional boundary condition is therefore taken 
to be 

8 = 0  on y = O ,  x < O ,  x > l .  ( 2 . 3 b )  

As we have indicated already, we are supposing that the region in which 8 
is significantly different from zero consists of a thin thermal boundary layer 
in the region 0 < x < 1, together with thin thermal wakes outside this region. 
We therefore make the boundary-layer approximation, neglecting the term 
Ox, in ( 2 . 2 ) )  which is replaced by 

st+tex = e,,. (2.4) 
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The condition that this should be a good approximation over most of the heated 
region in steady flow is that the PBclet number LU/D should be large. However, 
in this case U passes through zero, so the PBclet number is not always large. It 
seems plausible that the corresponding quantity in these circumstances should be 
the dimensionless number 

LA x (time scale)/D = L(A/D2)*, 

which is just the dimensionless length 1 of the heated region. If 1 %  1, therefore, 
we expect the boundary-layer approximation to be accurate almost everywhere ; 
i.e. for all values of x such that 1x1 and IZ-xl are both large compared with 1. 
That this expectation is justified is confirmed in $ 5 .  

Finally, we have to supply an initial condition if the mathematical problem 
is to be properly posed. This should incorporate the expectation that, long before 
reversal, there is a quasi-steady temperature field everywhere. That is, for 
t < - tA, where tA is a dimensionless time much larger than any other parameter 
of the problem, the temperature field should take a qmsi-steady form: 

e = O,, for t 6 - tA.  

However, if tA is large enough, the temperature field over the heated region is 
independent of the initial field at  all times such that ( t J  is small compared with 
tA. This is because the fluid still has a large negative velocity at  t = -tA; a 
fluid particle which is near the heated region at that time is convected away 
towards x = - co, and does not return until times close to t = + t,, by which 
time everything interesting has already happened. Therefore the initial condition 

8 =  0 for t < - t A  (2.5) 

may be substituted with no loss of precision. 
The problem to be solved, then, is defined by ( 2 . 2 )  or (2.4)) together with 

boundary conditions ( 3 . 3 ~ )  b )  and initial condition ( 2 . 5 ) .  We seek the tempera- 
ture field I9 (x, y ,  t ) .  In  fact, we are interested only in the boundary layer over the 
heated region, and therefore restrict attention to the region 0 < x < 1. Of par- 
ticular interest is the heat transfer from the heated region, which is proportional 
to 

1 

0 
&(t)  = 1-$1 -Ou(v=odx. (2.6) 

3. Approximate solution of the boundary-layer equation 
We expect that long after reversal, i.e. as t --f +a, the temperature field will 

consist of a quasi-steady thermal boundary layer with origin a t  the new leading 
edge x = 0. ‘Quasi-steady’ means that the term 19, in (2.4) is absent; in the 
region 0 < x < 1,6 must be a solution of 

t6, = Buy 
with boundary conditions 

8 = 1  on y = O ,  I9+0 as y + m .  
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The time t is only a parameter in this problem. The solution is 

O = erfc [ty(t/x)4], (3.2) 

and we expect it to be valid for t > t,, where t ,  is to be determined. We note that 
t, should be allowed to be a function of x,  because this quasi-steady boundary 
layer is likely to be set up much sooner a t  points close to the leading edge (x = 0) 
than a t  points further downstream: the influence of the leading edge will first be 
felt a t  a point when fluid particles which have passed x = 0 arrive at the point. 

The backwards-facing quasi-steady boundary layer, withleading edge at x = 1, 
which we expect to be present long before reversal ( t - t  -a), can be analysed 
similarly. The temperature field in it is 

o = erfc [g 2 (")"I 1-x (3.3) 

and we expect this to be valid for t < - tl(x). 
I n  between these two times, we expect the temperature to be given by a quasi- 

diffusive balance in which the term tO,  in (2.4) is neglected. The equation becomes 
the diffusion equation: 

0, = 0y2/7 

which must be solved subject to the same boundary conditions (3.1). An 
initial condition is also needed: this must be supplied by the requirement that 
the quasi-diffusive solution takes over, a t  time t = -tl,  from the backwards- 
facing quasi-steady boundary layer (3.3). Since t, depends on x, we expect the 
time a t  which the pure diffusion should be regarded as having started (the virtual 
origin of the diffusion) also to depend on x.  The appropriate solution is therefore 
of the form 

0 = erfc [&y/ ( t  + to)$] ,  (3.4) 

where to is a function of x.  Equation (3.4) is expected to be the approximate solu- 
tion for - t ,  < t < t,. 

We must now choose the quantities to(x), t l (x)  and t,(x). The choice oft, has 
been foreshadowed by the above remark that the influence of the leading edge 
x = 0 will be felt a t  a point when fluid particles which have passed x = 0 arrive 
a t  the point. Since flow reversal occurs a t  time t = 0, and the flow has constant 
acceleration, a particle a t  x = 0 will arrive a t  the point x on the heated region 
after a time (3x)*. Now, we know in the case of the impulsively started flat plate 
(Hall 1969) that the change-over between the diffusive and the quasi-steady 
solutions takes place quickly, and begins when the influence of the leading edge 
is first felt. We therefore assume that the same thing happens here, and choose t, 
accordingly : 

t ,(x) = (ex)&. (3.5) 

The forwards-facing quasi-steady boundary layer is present after this time; the 
diffusive solution is valid before it. 

The time - t,  of change-over between the backwards-facing quasi-steady bound- 
ary layer and the diffusive solution is determined in a similar way. The diffusive 
solution will take over, a t  a given point, a t  a time when particles which have 
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passed the leading edge x = 1 first fail to arrive at the point before flow reversal 
causes them to be swept back towards x = I, the new trailing edge. This time is 
therefore given by 

The choice of to (x) can now be made by requiring the temperature distribution 
to be continuous at t = - t , ,  when the diffusive solution takes over from the back- 
wards-facing quasi-steady boundary layer. This means that it cannot be made 
continuous a t  t = t , ,  since there are no free parameters in the solution ( 3 . 2 )  for the 
forwards-facing quasi-steady boundary layer. However, this is to be expected, 
since that solution can depend only on upstream conditions, not on the down- 
stream diffusion. The complete boundary-layer solut,ion, given in $ 4 ,  is also 
discontinuous at t = t,. At t = - t,, equations ( 3 . 3 )  and ( 3 . 4 )  are identical for all 
x (in the range 0 < x < I) if to is given by 

t , (x )  = [2(Z-X)]& (3.6) 

to@) = #[2(1-x)]6; ( 3 . 7 )  

we therefore choose this value of to. 
We are fortunate in this problem because the functional forms of both the 

quasi-steady and the diffusive solutions are the same, and it is possible to make 
the temperature distribution continuous a t  t = - t,. I n  the more realistic problems 
of a thermal boundary layer in a shear flow or of a viscous boundary layer, the 
functional forms are not the same. In  those cases it is necessary to determine to 
in some other way, for example, by requiring the flux of heat or mass along the 
boundary layer to be continuous at t = - t, for all x. 

The dimensionless heat transfer &(t)  from the heated [region [see ( 2 . 6 ) ]  can 
now be computedfrom thesolutions ( 3 . 2 ) ,  ( 3 . 3 )  and ( 3 . 4 ) ,  together with ( 3 4 ,  ( 3 . 6 )  
and ( 3 . 7 ) .  The results, when expressed in terms of a new dimensionless time 
t’ = tl-4, are 

( ( 2 1 4 7 ~ )  ( - t ’ )*  for t’ < - 4 2 ,  \ 

I 
( 3 . 8 )  

The fact that these results are independent of I, except in the definitions o f t ‘  
and Q,  indicates that  a different non-dimensionalization would have removed 1 
completely from the boundary-layer problem. Nevertheless, the present non- 
dimensionalization is more convenient for the exact solution of the full equation 
( 2 . 2 ) ,  performed in $ 5 ,  and we therefore retain it. 

4. Exact solution of the boundary-layer equations 
Initially we shall show how the boundary-layer equation can be solved when 

the velocity is an arbitrary function of time, although for particular results it is 
always taken to be of the form ( 2 . 1 ) .  The governing equation for O(x, y , t ) ,  
a generalization of ( 2 . 4 ) ,  is ,y+u(t) e, = e,,, 
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and the boundary and initial conditions are (2.3a, b )  and (2.5). It is convenient 
to write the condition on y = 0 as 

qx, 0, t )  = ~ ( x )  - H ( Z  - x), 

where H ( x )  is the Heaviside step function. The equation can be reduced to the 
diffusion equation by the transformation 

t 

0 
( = x-j- u(t ’)dt ’  = x-s ( t ) ,  

where s(t) is the distance of a fluid particle from its position at t = 0. The function 
O ( ( ,  y, t )  satisfies the equation 

0, = %I, 

with boundary and initial conditions 

0 ( 5 , a , t )  = 0, 

O((7 0, t )  = H[g + s(t)l -a[( - 1 +s( t )] ,  

w., y, -LA) = 0. 

The problem now is of standard form. Its solution is 

which for any smooth function s is equal to the sum of a number of error functions. 
We now revert to the particular case of a constant acceleration with a single 

flow reversal a t  t = 0. In  this case s( t )  = 6t2, and with (x, y, t )  as the independent 
variables instead of (t, y, t), the solution is 

O(x, y, t )  = F(r ,  y, t )  - F ( x  - 1, y7 t ) ,  (4.1) 

here y = y/2(t t tA)4.  The integrand will be non-zero whenever the square 
bracket is positive, and to find all values of p for which that is the case we must 
consider its zeros. They occur where 

92/4/23 = t & (t2 - 243, 

and whenever t2 > 2x the last term is taken to be the positive square root. Note 
that in this analysis we must consider both positive and negative values of x, 
because of the second term in (4.1)) as well as positive and negative values oft. 

If either t < 0 and x > 0, or t > 0 and x > &2, then the square bracket in (4.2) 
has no zeros, and is positive throughout the range of integration. In those cases, 
therefore, 

P(x ,  y7 t )  = erfc y. 

However, when t > 0 and 0 < x < it2, both zeros of the square bracket lie in the 
range of integration, and then 

P(x, 9, t )  = erfc y - erfc {+y[t + ( t 2 -  ~x)t]-B)  + erfc {iy[t - ( t 2 -  Zx)*]-&). 
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Finally, when x < 0, for all t, there is just one zero in the range of integration, 
and then 

F(x, y7 t )  = erfc y - erfc {&y[t + ( t 2  - 2x)4]-4}. 

When all these results are put into (4. I), the solution for B when x lies in the range 
0 < x < I, and t takes any value, is as follows. F o r t  > (2z)$, 

8 = erfc {hy [t - ( t2  - 2x)*]-4) -erfc (+y[t + ( tz  - 22)3]-*) 

+erfc{+y[t+ ( t 2 +  2(1-~))4]-3). (4.4) 

We may notice some interesting features of this solution. 
(i) For large negative values oft, set t = -t’, where t’ $ 14. Then the square 

bracket in (4.3) is equal to 

which is approximately equal to ( Z  - x)/t’. Equation (4.3) therefore reduces to that 
of the backwards-facing quasi-steady boundary layer, equation (3.3), as expected. 

(ii) For large positive values of t ( %  I t ) ,  the second and third terms in (4.4) 
cancel out to leading order, and together they are approximat,ely equal to 

-t’+tf{1+2(Z-x)/t’2):, 

[yZ/4(2n)* t] e-*gztZ, 

whose maximum value (as y varies) is proportional to l / t2 ,  which is small. In 
the first term, we have 

t - ( t2  - 244 % x/ t ,  

so that (4.4) reduces approximately to that of the forwards-facing quasi-steady 
boundary layer, equation (3.2), also as expected. 

(iii) For very small values of t ,  equation (4.3) is applicable everywhere in 
0 < x < 1 except where x < it2, which is a vanishingly small region and can be 
ignored. In  this case, the square bracket in (4.3) is approximately equal to 

This is of the form of the purely diffusive solution (3.4), but with to equal to 
[2(Z-x)]*, rather than $ times that quantity as predicted in (3.7). This implies 
that the heat-transfer function Q has somewhat different values from those 
given by (3.8).  

The heat-transfer function obtained from the complete solution (4.3) and (4.4) 
is as follows: 

(4.6) 

Q1 5 (2/34~r) [t’ + (t ’2+ 2)*]4 [(P + 2)3 - 2t‘] 

Q2 = Q1 + (2/3Jn) (2t‘)$ for 0 < t’ < .& 
Q2+ (2/3, /n)( [ t ‘+( t ’2-2)4]%[(t ’2-2)3--2tr ]+ [t’- ( t f 2 -  2)4]4 

for t’ < 0, 

x [(t’2-- 2)* + %’I} for t’ > J2. 
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FIGURE 1. Graphs of the dimensionless heat transfer Q as a function of time 8’. -, 
exact solution (4.6); ----, approximate solution (3.8); -.-.- , approximate solution with 
to = [2(Z-z)]&; - - - - -, quasi-steady solution. 

The graph of Q against t’ is plotted in figure 1, where this exact solution is com- 
pared with different approximations to it. The full curve is the exact solution 
given by (4.6). The broken curve is the approximate solution given by (3.8)) in- 
corporating into the diffusive part of the solution the value of to given by (3.7). 
The agreement is really remarkably good, considering the sweeping nature of the 
approximations, with the error nowhere exceeding 17%. This should be con- 
trasted with the other approximate solution in which (4.5) describes the diffusive 
part, and which is represented by the dash-dot curve in figure 1. This solution, 
although more accurate near t = 0, is extremely inaccurate for a range of negative 
times, and would be unacceptable in practice. The reason for the inaccuracy lies 
in the fact that the thickness of the diffusive boundary layer, given by (44, is 
zero a t  t = -[2(Z-x)]&, which is just the time - t ,  at which it is supposed to 
take over from the backwards-facing quasi-steady boundary layer. There will 
therefore begross discontinuities at  this time, and the heat transfer per unit length, 
- 82/11/=o, will locally become infinite. The former approximation, which ensures 
continuity at t = -t l ,  is to be preferred. Also plotted on figure 1 is the grossest 
approximation of all, in which the temperature distribution is taken to be quasi- 
steady all the time, so that Q = 2( I t ’ l / j . )h  for all t’. This is very inaccurate, especi- 
ally near t’ = 0. Figure 1 demonstrates that the approximate solution developed 
in $3, with to given by (3.7)) is a good one, and suggests that it is justifiable to 
derive approximate solutions in more difficult problems by a similar method. 

5. Exact solution of the full equation 
In all the work so far we have assumed that the boundary-layer approxima- 

tion can be applied throughout the period of flow reversal. That is, 8, is small 
compared with 8, everywhere at  all times. However, 6’ is discontinuous at  the 
ends of the heated strip, so 8, is locally infinite, and as usual the boundary-layer 
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approximation breaks down near those ends. We expect them to be surrounded 
by regions of length O(1) in which the exact solution must be applied; but if 1 
is large enough compared with I, these regions will not influence the temperature 
over mostofthe strip. Theboundary-layersolutiongivenby (4.3) and (4 .4)  exhibits 
a further discontinuity, in 8,) a t  the point x = it2 ( t  > 0 ) ,  so that 8,, is locally 
infinite there. Furthermore, the ratio of 8, to 8, in (4.4) is not small if Ix- 
is small, even for large values of x and 1 - x. There is therefore a region surround- 
ing x = &t2 where the boundary-layer approximation breaks down. This is the 
point where, in the approximate solution of $3, the forwards-facing quasi-steady 
boundary layer takes over from the diffusing solution. I n  this section we solve 
the problem exactly, restricting attention mainly to  the solution near x = i t 2  

(t > 0)) and making an estimate of the error in the calculated heat transfer. 
Equation (2.2) now governs the problem. We solve it, subject t o  the same 

boundary conditions as before, by taking Fourier transforms. Define 

so t'hat the transform of (3.3) is 

This can be converted into the diffusion equation by the substitution 

j? = exp (k2t - iikt2) 0, 

6t = 6yu. 

4 (k, y, - t A )  = 6(k a, t )  = 0, 

(5.1) 

and j? satisfies 

The boundary and initial conditions are obtained from the transform of the cor- 
responding, conditions on 8: 

z 
$(k, 0,  t )  = exp (k2t  - $ikt2) (1 - eikz). 

This problem, like that of $ 4 )  is in a standard form, and its solution can immedi- 
ately be written down as 

where y = y/2(t + tA)a again. When this is inserted into (5.1) it completes the solu- 
tion for 0. The Fourier transform can now be inverted formally, and 8 deter- 
mined in the following form: 

dk 
k 

exp ( - ikx + +ikt2 - k2t) - 

(5.3) 
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The essential feature of this equation is that the second integral is uniformly 
convergent for all real k,  y and t. We can therefore reverse the order of integration, 
and write F! in the form 

where 

The second integral in (5.4) is a familiar one, and if we define the inverse Fourier 
transform as a Cauchy principal value when the integrand has a pole on the real 
axis, the second integral is equal to 

- in erf (X/24 Y). 

Hence ( 5 . 5 )  

This integral cannot be evaluated in closed form so we shall seek asymptotic 
formulae for values of 1x1 much greater than 1 (negative values of x should be 
included because of the second term in (5.3)). 

We notice first that, when the quantity in the curly brackets in (5 .5 )  (8, say) 
is large and positive, the error function is approximately equal to + 1, and when 
it is large and negative the error function is approximately equal to - 1.  If erf { } 
were replaced by sgn { }, then the present solution would involve the sum of 
error functions, and would reduce to the boundary-layer solution of $ 4  (under 
the boundary-layer approximation, the -k2Y term in (5.4) is absent, and the 
second integral there would be equal to -nsgnX). When y is positive, and 1x1 
large, the magnitude of a is large for both small and large values of p. The exact 
theory differs from boundary-layer theory because, as i t  varies between y (small) 
and co, p may take a value which causes a to pass through zero, or close to it. 
Boundary-layer theory will be inaccurate if the range of values for which 

< O(1) is large enough to affect the value of the integral. Alternatively, 
boundary-layer theory will be accurate if a passes through zero (or close to it) 
so rapidly that the value of the integral is scarcely affected. 

We shall therefore estimate the difference J between the value of Pl(x) as 
given by (5.5) and its value according to boundary-layer theory. Changing the 
variable from p to h/y ,  we obtain the following equation for J :  

J=Y  1 [sgn {xG(h)) - erf {xG(h)}] e-h2g2 d h ,  
2jn i iz(t+tA)4 

where G(h) = A( 1 - t / 4~h2  + 1/32xh4). (5.7) 

The quantity in the square brackets is equal to erfc (xG) if XG > 0, and 

-erfc(-xG) if xG < 0; 

it therefore falls off exponentially as xG takes values increasingly far from zero. 
The major contributions to the value of the integral when 1x1 is large will arise 
from the vicinity either of zeros of G(h), or, if there are no zeros, of minima of 
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[G(h) ( ,  which we notice becomes infinite as h + 0 or A -+ 00. The zeros of G(h) 
are given by h2 = A& = ( 8 ~ ) *  [t (t2 - 2 ~ ) 4 ] ,  

and the stationary points are given by 

h2 = = ( 8 ~ ) ~ ~  [ - t & (t2 + 6 ~ ) * ] .  (5.9) 

In the range 0 < h < co, the function G(h)  takes one of four different forms 
according to the values of x and t. These are shown in figure 2. If x < 0, the func- 
tion takes one of the two forms shown in figure 2(a),  and the integral will be 
dominated by the neighbourhood of the single zero A,+. For 5 > 0 and t < (2x)&, 
G has no zeros (figure 2 b )  and the integral is dominated by the neighbourhood 
of the single minimum hl+. For x > 0 and t > (2x)*, G has two zeros in the range 
(figure 3c )  which will both contribute to the integral. 

When x < 0 (figure 2a) ,  an asymptotic expansion of the integral in inverse 
powers of 1x1 can be obtained quite simply by considering the neighbourhood of 
the zero A,+. When x > 0 and t > (ax)& (figure 2 c ) ,  and there are two zeros, a 
similar asymptotic expansion can be derived by considering each zero inde- 
pendently, provided that the zeros are well separated. However, we notice that, 
when t tends to (ax)*, the two zeros A,, and the minimum A,, all come together, 
so that the expansion procedure breaks down and another must be found. 
A different expansion can also be found when x > 0 and t < (2x)J (figure 2 b ) ,  this 
time by considering the neighbourhood of the minimum hl+; this too breaks down 
when t tends to (2x)*. In  the following three subsections we derive the expansions 
for large positive values of x in the three cases (i) t > (42x)* and It- (2x)$( not 
small, (ii) t < (2x)t  and [t-(22)*1 not small, and (iii) lt-(2x)*1 small. The 
method of expansion for x < 0 is the same as for one of the zeros in case (i), 
and is not considered further. 

The lower limit of integration in (5.6) can without loss of accuracy be replaced 
by zero, since t ,  is very large and t ,  in the cases of interest, is positive. An integra- 
tion by parts then gives 

J = J  =z - $/om erf(yh) G’(A) e-*’aZ(A)dh (5.10) 

when t < (2x)6 (G as in figure 2b), and 

J = J1 = J, - erf (yh,,) + erf (yh,-) 

when t > (2x)g (G as in figure 2 c ) .  The corresponding corrections to the heat- 
transfer function are given by 

(5.11) 

when J = J,, with the additional term - (2/,/m) (Ao+ - A,-) when J = J1. The 
integrals in (5.10) and (5.11) can be further transformed by the change of vari- 
able [ = Gfh), but care must be taken with the inverse transformation in which 
h is expressed in terms of f .  The minimum value of G(h)  is = G(h).  The range 
of integration must be split into two parts, in the first of which 6 goes from 00 to 
tl, while h goes from 0 to A, and may be written as h = h-(<). In  the second range 
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FIGURE 2.  Graphs of G(h) against A. (a )  -, ;2: < 0, t > (-6z)& (A,+ < 0); ---, 
z < 0, t < (-6z)$ (Ao-  < O,h,* complex). ( b )  z > 0 ,  t < (2z)* (Al- < 0 ,  &A complex). 
(c) 2 > 0, t > ( 2 4 3  (Al- < 0 ) .  

5 goes from 
(see figure 2 6 ) .  Thus (5.11) becomes 

to co, while h goes from A, to 00 and may be written as h = h+(l) 

qJ = 21 [A+( [ )  - A-(<)] e-s*cz (5.12) 
7T 51 

and the integral in (5.10) has the same form, but with A*(() replaced by 

i![..erf[yh45)1. 
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(i) t > (2x)4  It- (.%)+I not small 

In this case, G(h) has two distinct real zeros, and the value of f 1  is negative (figure 
2c) .  The integrand is a maximum when 5 = 0, and to evaluate the integral asymp- 
totically we expand the functions A&) in powers off .  Writing 

A*([) = 4J*+a,*f+a2*52+ ..., 
we use the definition (5.7) of G(h) and the values (5.8) of A,,* to obtain 

(t * S)+ t * S  
4s ' 

(2X)t (2t T 38)  ( t  & S) t  
1 6S3 &* = (2 )+ > a15 = +-- a25 = 'F J 

where S = (t2-2x)i .  When x >> 1 and t = O(x4) (that is, we do not consider 
values o f t  which are very large compared with the critical value (2x)*), then 
ho* = O(x-)), al& = O(l ) ,  a2& = O(x*) and f1 = G(h,) = O(x- i ) .  If we now set 

= x5, the lower limit of integration in (5.12) becomes x&, which is large and 
negative, and can be replaced by - a. The odd terms in the integrand are then 
seen to make no contribution to the integral, which for each zero becomes 

= & (2/477) {Ao* + a2*/2x2 $- O(x-Y)}. (5.13) 

The total correction to the heat-transfer function in this case is 

q J ,  = Q J + . ~ ~ J - - ( ~ / J ~ )  ( ' o + - ~ o - ) ,  

so the leading terms in (5.13) cancel out, and we finally obtain 

qj ,  = - [8(2nx)* ~8~1-l [(at - 38) (t +AS')$ + (2t + 38) (t - S)a] [ 1 + O ( d ) ] ,  (5.14) 

which is O ( x 4 ) .  This is small compared with the boundary-layer value, which is 
O(x-4). The correction to the temperature field is obtained in the same way, 
by expanding erf [yh*(<)] in powers of 6. 

The expansion breaks down when t is close to (2x)4. To see this, set 

t2 = 2x(1 + E ) ,  with E < 1, 

so that S = (2xe)a. The leading term h,+-ho- in the expansion for qJ++qJ- 
is then proportional to x*&, while the next term, (a2+ - a2-)/.z2, is proportional 
to x - k a ,  which becomes as large as the leading term when E = O(x-%). Further- 
more, f,cc ex-$, so I X < ~ ~  is no longer large when E = O(x-s). Thus the whole ex- 
pansion procedure ceases to be valid when B is this small. We notice that, even 
then, the correction to the heat-transfer function is O(x-*), which is still small 
compared with the boundary-layer value. 

(ii) t < (22)9, It- (2x)*1 not small 

In this case, G(h) has no zeros, and its minimum value is positive (figure 2b). 
The neighbourhood of this minimum will dominate the integral, so we expand 
A* in powers of cr, where CT = 6 - Writing 

h*(f) = '1 CT' +p2& fp3*a' + * ' *  J (5.15) 
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we obtain 
(S' - t )& (S' - t)% 

= _+I, A+ = pz-, 
A1 = W' A* = f 2( 2x)S 23'4 

p3+ = k ,!I-, x 0(1), etc., 

where S' = (6x + t2)$. Note that p = O(x-B) and is positive. Thus A, - A- is an 
odd function of a*, and (5.12) becomes 

(5.17) 

In  this expansion both the second and the third term in the square brackets are 
O(x-$), while the value of qJ is o(x-g e-kxP), where k is a constant. This is exponen- 
tially small, so that the boundary-layer solution is extremely accurate. 

Once more, the expansion breaks down when It - ( 2 x ) f  I is small. If 

t 2  = 2x( l - e ) ,  with E: < 1, 

El is again proportional to ex-%, so the second term in (5.17) is as large as the first 
when E = O(x-4). This time, however, the values of X', p, etc., are not proportional 
to some power of e, so the expansion (5.15) is valid however small B is. The error 
lies in the expansion of exp [ - xz(2&a + &)I, in which we assumed that x2a2 
was smaIl when a was such that x2E1a = O(1); these two terms are of equal 
magnitude when e = O(x-a). When the expansion breaks down, qJ = O(x-3) again. 

(iii) ( t - (2x) f l  < i 
Writing t 2  = 2x( 1 - E:) as in (ii), we consider values of 181 much smaller than those 
for which the above expansions break down, i.e. 161 < x-4. We can now modify 
the expansion procedure of (ii): in this case the integral (5.16) is dominated by 
values of a such that x r  = O(l) ,  and x2Ela = O(x(,) = O ( E : X ~ )  < 1. We therefore 
have 

q = - e-x'c:/om [ P d  + p3+ a3 + . . .I [i - 2x25, a + . . .I e-s2a2da 
4x 
7 l  

(5.18) 

and here, too, pJ = O(x-8). Note that this expansion is valid for t > ( 2 x ) t  as 
well as t < (2x)3; for values of e so small that )x(,) < 1, the distinction between 
the two cases is irrelevant, and manifests itself only because 5, changes sign. The 
only regions for which we have not obtained a valid asymptotic expansion for 
qJ are those for which I E ~  = O(x-4)) where the expansions (5.14) and (5.17) both 
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merge into (5.18). I n  such regions the solution can be expressed in terms of para- 
bolic cylinder functions of argument xcl but this adds little to our understanding 
of the transition. Furthermore, all the above results indicate that qJ is never 
larger than O(x-Q), which is small compared with the boundary-layer value of 
q = O(x-4). We therefore conclude that boundary-layer theory gives a good 
approximation to the heat-transfer function q(x) for all values of x such that 
0 < x < l and  1x1 9 1, IZ-xl S I .  
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